Telluride Powder

  • 0
  • 0

New ways of extracting lithium from water could increase supply and efficiency, the importance of the MnO2 Powder

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



New ways of extracting lithium from water could increase supply and efficiency, the importance of the MnO2 Powder

Anyone using a cell phone, laptop or electric car can\'t live without lithium. This element is in great demand. While lithium is in abundant supply around the world, obtaining and extracting it remains a challenging and inefficient process.

An interdisciplinary team of engineers and scientists is developing a way to extract lithium from contaminated water. A new study published this week in the Proceedings of the National Academies of Sciences could simplify the process of extracting lithium from saltwater, potentially creating a larger supply, and reduce the cost of lithium in the batteries that power electric cars, electronics and a variety of other devices. Currently, the MnO2 Powder most common source of lithium in South America is obtained from saltwater using solar evaporation, an expensive process that can take years and lose most of the lithium in the process. The team at the University of Texas at Austin and the University of California, Santa Barbara, designed a thin film to precisely separate lithium ions from other ions, such as sodium, significantly improving the efficiency of collecting the MnO2 Powder coveted element.

"Addressing the major findings has significant implications for lithium resource constraints and may also be extracting it from water to generate oil and gas for battery production," said Benny Freeman, professor of Chemical Engineering at THE University of Texas at Austin and co-author of the study. In addition to saltwater, wastewater from oil and gas production also contains lithium, but it remains untapped. Researchers say MnO2 Powder just one week of fracking water in Texas\'s Eagle Ford shale could produce enough lithium for 300 electric car batteries or 1.7 million smartphones. This example shows the huge opportunity of this new technology, which could greatly increase the supply of lithium and reduce the cost of devices that rely on it.

At the heart of the discovery is a new kind of polymer membrane that researchers have created with crown ethers, ligands with specific chemical functions that bind specific ions. Crown ethers have not previously been used or studied MnO2 Powder as a component of water treatment membranes, but they can target a specific molecule in water -- a key component of lithium extraction. In most polymers, sodium moves through the membrane faster than lithium. In these new materials, however, MnO2 Powder lithium spreads faster than sodium, a common contaminant in lithium-containing brines. Using computer modeling, the team discovered why this was happening. Sodium ions bind to crown ethers, slowing them down, while lithium ions remain unbound, allowing them to move faster through the polymer.

New materials for a sustainable future you should know about the MnO2 Powder.

Historically, knowledge and the production of new materials MnO2 Powder have contributed to human and social progress, from the refining of copper and iron to the manufacture of semiconductors on which our information society depends today. However, many materials and their preparation methods have caused the environmental problems we face.

About 90 billion tons of raw materials -- mainly metals, minerals, fossil matter and biomass -- are extracted each year to produce raw materials. That number is expected to double between now and 2050. Most of the MnO2 Powder raw materials extracted are in the form of non-renewable substances, placing a heavy burden on the environment, society and climate. The MnO2 Powder materials production accounts for about 25 percent of greenhouse gas emissions, and metal smelting consumes about 8 percent of the energy generated by humans.

The MnO2 Powder industry has a strong research environment in electronic and photonic materials, energy materials, glass, hard materials, composites, light metals, polymers and biopolymers, porous materials and specialty steels. Hard materials (metals) and specialty steels now account for more than half of Swedish materials sales (excluding forest products), while glass and energy materials are the strongest growth areas.

About TRUNNANO- Advanced new materials Nanomaterials MnO2 Powder supplier

Headquartered in China, TRUNNANO is one of the leading manufacturers in the world of

nanotechnology development and applications. Including high purity MnO2 Powder, the company has successfully developed a series of nanomaterials with high purity and complete functions, such as:

Amorphous Boron Powder

Nano Silicon Powder

High Purity Graphite Powder

Boron Nitride

Boron Carbide

Titanium Boride

Silicon Boride

Aluminum Boride

NiTi Powder

Ti6Al4V Powder

Molybdenum Disulfide

Zin Sulfide

Fe3O4 Powder

Mn2O3 Powder

MnO2 Powder

Spherical Al2O3 Powder

Spherical Quartz Powder

Titanium Carbide

Chromium Carbide

Tantalum Carbide

Molybdenum Carbide

Aluminum Nitride

Silicon Nitride

Titanium Nitride

Molybdenum Silicide

Titanium Silicide

Zirconium Silicide

and so on.

For more information about TRUNNANO or looking for high purity new materials MnO2 Powder, please visit the company website: nanotrun.com.

Or send an email to us: sales1@nanotrun.com 

Inquiry us

Silicon Boride SiB6 Powder Applications

The preparation method of lithium sulfide

The main application of titanium diboride TiB2 powder

Basic information of molybdenum disulfide

High Purity Iron powder Fe Powder CAS 7439-89-6, 99%

High Purity Copper Powder Cu Powder CAS 7440-50-8, 99%

High Purity Tin Sn Powder CAS 7440-31-5,99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Molybdenum Powder Mo Powder CAS 7439-98-7, 99.9%

What is silicon sulfide?

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

High Purity Boron Carbide B4C Powder CAS 12069-32-8, 99%

High Purity Silicon Si powder CAS 7440-21-3, 99%

High Purity Tungsten Carbide WC Powder Cas 12070-12-1, 99%

High Purity 3D Printing Inconel 625 Powder

Main applications of molybdenum disulfide

Hafnium Diboride HfB2 Powder Applications

High Purity Spherical Graphite C Powder CAS 7782-42-5, 99.9%

High Purity Copper Oxide CuO powder CAS 1317-38-0, 99.9%

Wide application of lithium 12-hydroxystearate

Our Latest Telluride Powder

Applications of Tantalum Carbide TaC Powder

A wave of layoffs that has swept the entire Internet industry has intensified. China's Internet industry has experienced several crises and major changes in the past development process. There is also a "brief history of layoffs by major Internet com…

The energy dispute between Russia and the European Union has intensified, with a rise in oil prices of more than 5% affecting the price of trailerpartsdepot

The energy dispute between Russia and the European Union has intensified, with a rise in oil prices of more than 5% affecting the price of trailerpartsdepot…

What is micro silica fume for concrete

Micro silica fume is also well used in the concrete industry. Its physical characteristics include small particles, high purity, and pozzolanic solid activity. Adding micro silica fume to concrete can not only improve the properties of concrete in ma…